
Extracted from: Analyze the Data not the Drivel.
See: https://analyzethedatanotthedrivel.org

src-tex: https://github.com/bakerjd99/Analyze-the-Data-not-the-Drivel/tree/master/wp2latex/numpyanotheriversong5565.tex

src-tex-sha256: 129e80f22c38515ce684638aa36dee3066fde643b14f697840799ae99beb6cee

©Copyright John D. Baker 2009 — 2023 All rights reserved

NumPy another Iverson Ghost
Posted: 31 Mar 2018 21:07:53

During my recent SmugMug API and Python adventures I was
haunted by an Iverson ghost: NumPy

An Iverson ghost is an embedding of APL like array
programming features in nonAPL languages and tools.

You would be surprised at how often Iverson ghosts appear. Whenever programmers
are challenged with processing large numeric arrays they rediscover bits of APL. Often
they’re unaware of the rich heritage of array processing languages but in NumPy's case,
they indirectly acknowledged the debt. In Numerical Python the authors wrote:

The languages which were used to guide the development of NumPy include
the infamous APL family of languages, Basis, MATLAB, FORTRAN, S
and S+, and others.

I consider “infamous” an upgrade from “a mistake carried through to perfection.”

Not only do developers frequently conjure up Iverson ghosts, they also invariably
turn into little apostles of array programming that won’t shut up about how cutting
down on all those goddamn loops clarifies and simplifies algorithms. How learning to
think about operating on entire arrays, versus one dinky number at a time, frees the
mind. Why it’s almost as if array programming is a tool of thought.

Where have I heard this before?

Ahh, I’ve got it, when I first encountered APL almost fifty years ago.

1

https://analyzethedatanotthedrivel.org/
https://analyzethedatanotthedrivel.org
https://analyzethedatanotthedrivel.org
https://github.com/bakerjd99/Analyze-the-Data-not-the-Drivel/tree/master/wp2latex/numpyanotheriversong5565.tex
https://analyzethedatanotthedrivel.org/2018/03/31/numpy-another-iverson-ghost/
https://github.com/bakerjd99/smugpyter
http://numpy.sourceforge.net/numdoc/numdoc.pdf
http://www.cs.virginia.edu/~evans/cs655/readings/ewd498.html
http://www.jsoftware.com/papers/tot.htm

Yes, I am an old programmer, a fossil, a living relic. My brain is a putrid pool
of punky programming languages. Python is just the latest in a longish line of
languages. Some people collect stamps. I collect programming languages. And, just
like stamp collectors have favorite stamps, I find some programming languages more
attractive than others. For example, I recognize the undeniable utility of C/C++, for
many tasks they are the only serious options, yet as useful and pervasive as C/C++ are
they have never tickled my fancy. The notation is ugly! Yeah, I said it; suck on it C
people. Similarly, the world’s most commonly used programming language JavaScript

is equally ugly. Again, JavaScript is so damn useful that programmers put up with
its many warts. Some have even made a few bucks writing books about its meager
good parts.

I have similar inflammatory opinions about other widely used languages. The one that
is making me miserable now is SQL, particularly Microsoft’s variant T-SQL. On purely
aesthetic grounds I find well-formed SQL queries less appalling than your average C

pointer fest. Core SQL is fairly elegant but the macro programming features that have
grown up around it are depraved. I feel dirty when forced to use them which is just
about every other day.

At the end of my programming day, I want to look on something that is beautiful. I
don’t particularly care about how useful a chunk of code is or how much money it
might make, or what silly little business problem it solves. If the damn code is ugly I
don’t want to see it.

People keep rediscovering array programming, best described in Ken Iverson’s 1962
book A Programming Language, for two basic reasons:

1. It’s an efficient way to handle an important class of problems.
2. It’s a step away from the ugly and back towards the beautiful.

Both of these reasons manifest in NumPy’s resounding success in the Python world.

As usual, efficiency led the way. The authors of Numerical Python note:

Why are these extensions needed? The core reason is a very prosaic one,
and that is that manipulating a set of a million numbers in Python with
the standard data structures such as lists, tuples or classes is much too
slow and uses too much space.

Faced with a “does not compute” situation you can either try something else or fix
what you have. The Python people fixed Python with NumPy. Pythonistas reluctantly
embraced NumPy but quickly went apostolic! Now books like Elegant SciPy and the

2

http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596517748.do
http://www.jsoftware.com/papers/APL.htm
https://www.youtube.com/watch?v=ZBAijg5Betw
https://www.quora.com/Whats-the-exact-difference-between-a-Pythoneer-and-a-Pythonista
http://shop.oreilly.com/product/0636920038481.do

entire SciPy toolset that been built on NumPy take it for granted.

Is there anything in NumPy for programmers that have been drinking the array processing
cool aid for decades? The answer is yes! J programmers, in particular, are in for a
treat with the new Python3 addon that’s been released with the latest J 8.07 beta.
This addon directly supports NumPy arrays making it easy to swap data in and out of
the J/Python environments. It’s one of those best of both worlds things.

The following NumPy examples are from the SciPy.org NumPy quick start tutorial. For
each NumPy statement, I have provided a J equivalent. J is a descendant of APL. It was
largely designed by the same man: Ken Iverson. A scumbag lawyer or greedy patent
troll might consider suing NumPy’s creators after looking at these examples. APL’s
influence is obvious. Fortunately, Ken Iverson was more interested in promoting good
ideas that profiting from them. I suspect he would be flattered that APL has mutated
and colonized strange new worlds and I think even zealous Pythonistas will agree
that Python is a delightfully strange world.

Some Numpy and J examples
Selected Examples from https://docs.scipy.org/doc/numpy-dev/user/quickstart.html Out-
put has been suppressed here. For a more detailed look at these examples browse the
Jupyter notebook: NumPy and J Make Sweet Array Love.

Creating simple arrays
numpy

a = np.arange (15). reshape(3, 5)

NB. J

a =. 3 5 $ i. 15

numpy

a = np.array ([2,3,4])

NB. J

a =. 2 3 4

numpy

b = np.array ([(1.5,2,3), (4,5,6)])

3

http://code.jsoftware.com/wiki/NuVoc
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://github.com/bakerjd99/jacks/blob/master/numpyjlove/NumPy%20and%20J%20make%20Sweet%20Array%20Love.ipynb

NB. J

b =. 1.5 2 3 ,: 4 5 6

numpy

c = np.array([[1,2], [3,4]], dtype=complex)

NB. J

0 j.~ 1 2 ,: 3 4

numpy - make complex numbers with nonzero real and imaginary parts

c + (0+4.7j)

NB. J - also for J

c + 0j4.7

numpy

np.zeros((3,4))

NB. J

3 4 $ 0

numpy - allocates array with whatever is in memory

np.empty((2,3))

NB. J - uses fill - safer but slower than numpy 's trust memory method

2 3 $ 0.0001

Basic operations
numpy

a = np.array([20 ,30 ,40 ,50])

b = np.arange(4)

c = a - b

NB. J

a =. 20 30 40 50

b =. i. 4

4

c =. a - b

numpy - uses previously defined (b)

b ** 2

NB. J

b ^ 2

numpy - uses previously defined (a)

10 * np.sin(a)

NB. J

10 * 1 o. a

numpy - booleans are True and False

a < 35

NB. J - booleans are 1 and 0

a < 35

Array processing
numpy

a = np.array([[1,1], [0,1]])

b = np.array([[2,0], [3,4]])

elementwise product

a * b

NB. J

a =. 1 1 ,: 0 1

b =. 2 0 ,: 3 4

a * b

numpy - matrix product

np.dot(a, b)

NB. J - matrix product

a +/ . * b

5

numpy - uniform pseudo random

a = np.random.random((2,3))

NB. J - uniform pseudo random

a =. ? 2 3 $ 0

numpy - sum all array elements - implicit ravel

a.sum(a)

NB. J - sum all array elements - explicit ravel

+/ , a

numpy

b = np.arange (12). reshape (3,4)

sum of each column

b.sum(axis =0)

min of each row

b.min(axis =1)

cumulative sum along each row

b.cumsum(axis =1)

transpose

b.T

NB. J

b =. 3 4 $ i. 12

NB. sum of each column

+/ b

NB. min of each row

<./"1 b

NB. cumulative sum along each row

+/\"0 1 b

NB. transpose

|: b

6

Indexing and slicing
numpy

a = np.arange (10) ** 3

a[2]

a[2:5]

a[: :-1] # reversal

NB. J

a =. (i. 10) ^ 3

2 { a

(2 + i. 3) { a

|. a

7

	NumPy another Iverson Ghost

